ROTEC LÜFTUNGSGITTER BERLIN

TECHNISCHE DATEN

ANWENDUNG	Luftführung	Verstellbar
	Luftart	Langer Wurf
AUFBAU	Form	Rund
	Mengenregulierung	Drosselscheibe
	Min. Durchmesser	125 mm
	Max. Durchmesser	400 mm
MATERIAL	Standardmaterial Aluminium lackiert	
	Standardfarbe Oberfläche	RAL9010
	Farboptionen	RAL nach Wahl pulverbeschichtet

SCHNELLAUSWAHLTABELLE

JD150, JD160, JD170 ZULUFT

Qv [m³/h]	L _w		
Ø [mm]	25 dB(A)	30 dB(A)	35 dB(A)
160 mm	268 m³/h	325 m³/h	393 m³/h
200 mm	456 m³/h	552 m³/h	668 m³/h
250 mm	748 m³/h	898 m³/h	1078 m³/h
315 mm	1730 m³/h	1974 m³/h	2253 m³/h
400 mm	3023 m³/h	3441 m³/h	3917 m³/h

JD SHORT PIPE

WEITWURFDÜSEN

Varianten JD150 JD160 JD170

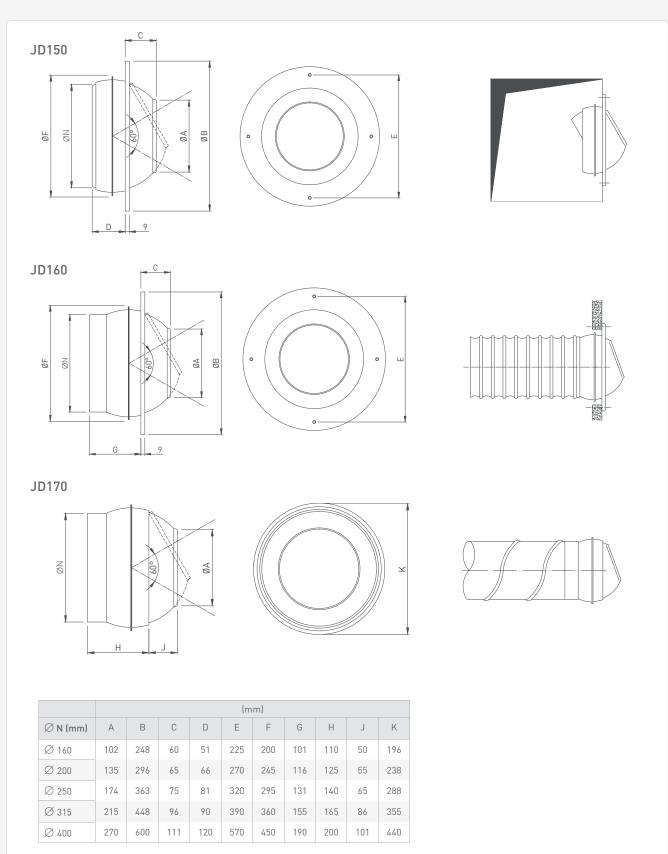
Die Weitwurfdüsen JD sind speziell für den Einsatz in großen und hohen Räumen, wie z.B. in Konzertsälen, Theatern, Museen, Flughäfen, Sport- und Betriebshallen usw. entwickelt. Durch die aerodynamische Form gibt es bei hohen Austrittsgeschwindigkeiten einen niedrigen Lärmpegel und können grosse Entfernungen überbrückt werden (Wurf). Für alle Varianten ist die Düse über 360° schwenkbar. Da diese Weitwurfdüsen bei wechselnden Zulufttemperaturen funktionieren, kann die Düse entweder nach oben oder nach unten (Kühlen oder Heizen) gerichtet werden.

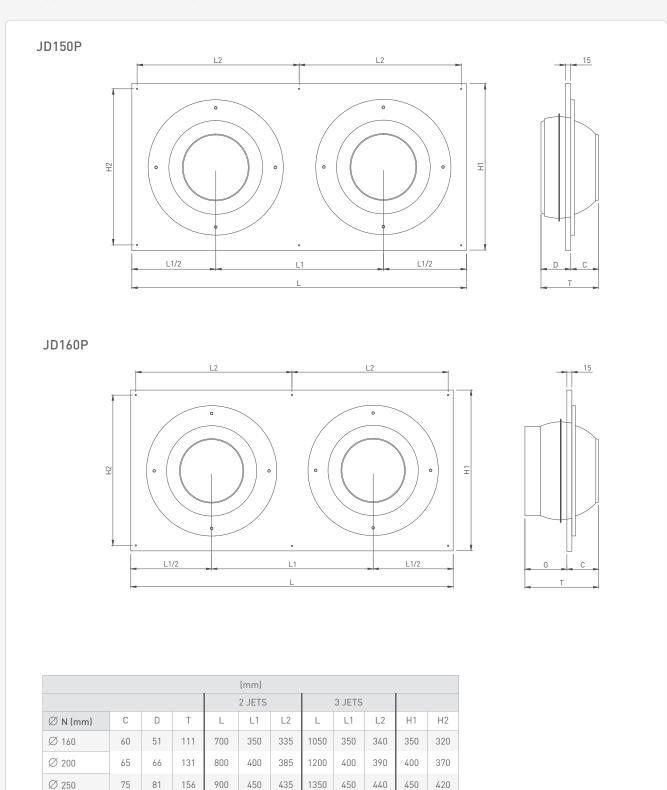
Über 60° einstellbar (Kühlen und Heizen)

Über 360° schwenkbar

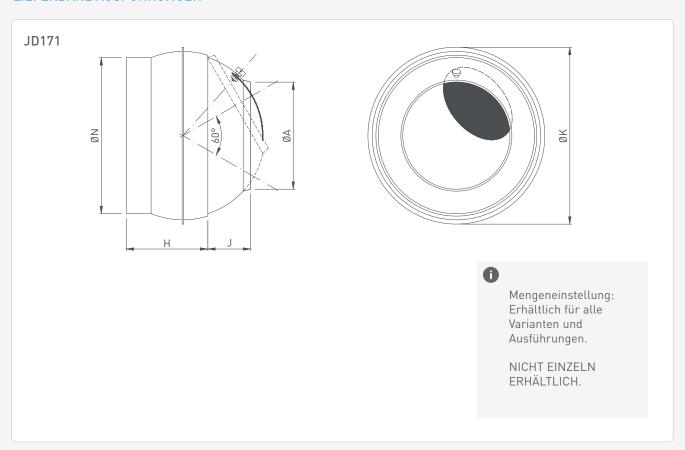
Außerst niedriger Lärmpegel

Gute Induktion

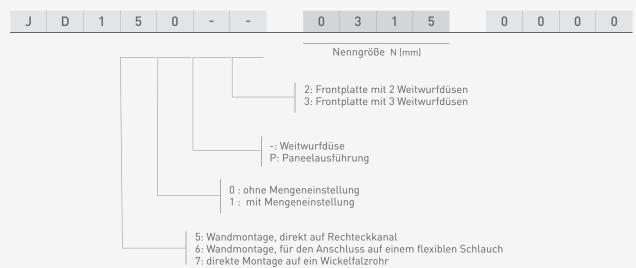




ABMESSUNGEN

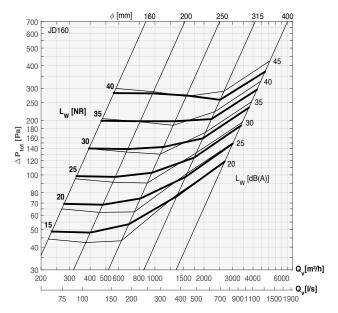

ABMESSUNGEN + PANEELAUSFÜHRUNG

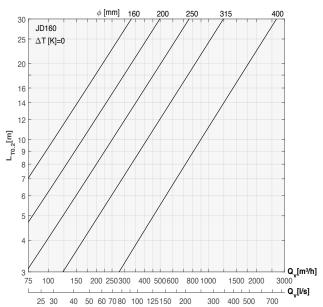
Ø 315


Ø 400

LIEFERBARE AUSFÜHRUNGEN

BESTELLSCHLÜSSEL


GITTER


AUSWAHL

ZULUFT

SCHALLLEISTUNGSPEGEL, DRUCKVERLUST (FÜR PANEELAUSFÜHRUNG, SEHEN SIE DIE KORREKTURFAKTOREN)

WURF (FÜR PANEELAUSFÜHRUNG, SEHEN SIE DIE KORREKTURFAKTOREN)

EFFEKTIVE LUFTAUSTRITTSFLÄCHE

		Ø [M	M]		
	160	200	250	315	400
A _K [m²]	0,0057	0,0102	0,0168	0,0259	0,0408

KORREKTURFAKTOREN FÜR **PANEELAUSFÜHRUNG**

(BASIEREND AUF DEM VOLUMENSTROM FÜR EINE EINHEIT JD120)

WURFWEITE

LT _{0.2} [m]	5	10	15	20
JD110P2	x1.11	x1.29	x1.32	x1.34
JD110P3	x1.15	x1.45	x1.54	x1.55

SCHALLLEISTUNGSPEGEL

	L_W
JD110P2	+3
JD110P3	+5

DRUCKVERLUST

Verwenden Sie das Volumenstrom-Diagramm für eine Einheit JD120

Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**

WEITWURFDÜSEN JD150 JD160 JD170

AUSWAHL

AUSWAHLBEISPIEL

bekannte Daten		
Volumenstrom, Q _v	[m³/h]	300
Temperatur Zuluft,T ₀	[°C]	26
Temperatur Raumluft, T _a	[°C]	26
maximal zulässiger Schalldruckpegel, L _p	[dB(A)]	35
akustische Raumdämpfung, ΔL _r	[dB(A)]	8
maximale Luftgeschwindigkeit in der Komfortzone ($20~\text{m}~\Delta L_{r}$	[m/s]	0,2
Auswahl mittels Graphen		
ausgewählter Anschlussdurchmesser	[mm]	315
Strahlweg, L _{T0.2}	[m]	17,3
Schallleistungspegel, L _w	[dB(A)]	<20
Schalldruck, L_p (= L_W - ΔL_r)	[dB(A)]	<20
Gesamtdruckverlust, ΔP _{tot}	[Pa]	7

ZEICHENERKLARUNG

Zeichen	Einheit	
A_k	[m²]	Effektive Luftaustrittsfläche (gemessen)
ΔP _{tot}	[Pa]	Gesamtdruckverlust
Q _V	[m³/h/] [l/s/]	Volumenstrom
L _w	[NR] [dB(A)]	Schallleistungspegel
L _{T0.2}	[m]	Länge des Strahls bei einer Strahlmittengeschwindigkeit von 0,2 m/s